Revolutionary Technology in Formula One: Downforce-Generating Wings

As the lessons demonstrated by Colin Chapman’s use of the monocoque chassis filtered down through the rest of the Formula One grid, the cars changed shape towards a cigar-like form typified by the bodywork of the 1966 and 1967 seasons. In 1966, there was another change in the regulations, once again allowing three-litre engines which produced in the order of 350 to 400 bhp, about twice the power of the engines used from 1961 to 1965. With such a surfeit of power, the cars were unpredictable and wild, and a bit of extravagant cornering wouldn’t sacrifice too much time around a lap. Within a few years, though, both the bodywork of the cars and the driving styles had begun to change, though, as the cars began to be pushed down into the track by aerodynamic effects and driving styles became more precise in order to compensate.

As with other revolutionary developments in the world of Formula One, the changes in this period were derived from the world of aeronautics. It has, and had been known for a very long time that an aerofoil could generate lift in accordance with Bernoulli’s principle, and aeronautical engineering had progressed in leaps and bounds during the years of the Second World War. Ideas had been hopping around the Formula One paddock for years about the effect of a reversed aerofoil, which would work in the opposite way to a typical aeroplane wing, and indeed, a few minor experiments had been tried with this idea in motor racing, including Jim Hall’s experiments with the Chaparral racing cars in the mid 1960s. Unlike an aeroplane wing, which generates lift by creating a pressure differential between the longer airflow path on top of the wing and the shorter path on the bottom of the wing, an automotive wing creates downforce by reversing the pressure differential, with a longer airflow path on the bottom rather than the top.

It took until 1968 for a downforce-generating wing to find its way into Formula One. Ferrari, having apparently got over its period of conservatism which cost it development time over the early garagiste teams, and Brabham were the first teams to try the idea of placing an aerofoil onto their cars. In the 1968 Belgian Grand Prix, raced at the fast, flowing Spa-Francorchamps circuit, Ferrari used a high-strutted rear aerofoil balanced off with little tabs mounted to the front of the nosecone, while Brabham used a lower-mounted rear wing, but balanced it off with larger front winglets. While neither Brabham affected the race much, both exiting due to reliability issues, the Ferrari of Chris Amon easily snatched pole – four seconds in front of Jackie Stewart in his Matra.

Amon then set about challenging for the lead when his radiator gave up, thus ending an interesting experiment. To be fair, the Ferrari was already a quick car, with the wingless car of Amon’s teammate, Jacky Ickx, finishing third, but the proof was there that wings were a useful addition to Formula One cars. Meanwhile, Bruce McLaren took a maiden victory for his eponymous team, while other teams looked on and wondered what they could do with the new aerodynamic aids.

Lotus was, unsurprisingly, one of these teams. With Colin Chapman having an interest in aeronautical developments, and having introduced an idea found in aeroplane design into his racing cars before, it had not escaped Chapman’s attention that a reversed aerofoil could be used in this fashion, even before Ferrari and Brabham tried their own experiments. The Lotus Formula One cars soon sprouted wings, which were bolted onto the suspension and towered up into the air on thin struts in a decidedly ungainly fashion. The highly-mounted wings suffered less from turbulence than wings mounted lower down, but were, as several incidents the following year would demonstrate, highly dangerous.

By the end of 1968, Graham Hill had taken his second World Drivers’ Championship driving for Lotus, which took the Constructors’ Championship along with it. The Lotus team, with an exceptional car, powered by a refined Cosworth V8 engine and using the nascent technology of its aerodynamic aids to its advantage, made the most of a year where their top driver, Jim Clark, was killed early on in a Formula Two race and Graham Hill had to step up to the role of leading the team. More teams throughout the year had seen the advantages of downforce-generating wings, and they spread throughout almost the entire grid.

By 1969, the high-strutted rear wing of the Lotus 49B had been joined by an equally tall front wing which towered over the front suspension. Other teams, including McLaren, had similar wing layouts, but these proved problematic. The tall struts that the wings were mounted to proved fragile, as demonstrated in the practice session at the first Grand Prix of the season, held at Kyalami in South Africa, and the practice of mounting the wings to the suspension also proved troublesome. When both Lotus cars crashed out of the Spanish Grand Prix a couple of months later, downforce-generating wings were temporarily banned, only brought back when the rules were rewritten to permit low-mounted wings bolted to the chassis. The wings of today’s Formula One cars roughly resemble the layout of the later Formula One cars of the 1969 season, although they are far more evolved.

The aerodynamic expertise of the Matra team helped them win both the Drivers’ Championship, with Jackie Stewart at the wheel, and the Constructors’ Championship by significant margins. Lotus only reached third in the Constructors’ Championship, as an season of unreliability for Jochen Rindt, and several finishes out of the points for Graham Hill left them floundering. Some wasted development on the unsuccessful four-wheel drive Lotus 63 kept them from focusing their full attention on the car with more potential, although Matra and McLaren did try their own unsuccessful four-wheel drive systems, with little more success than Lotus. The aerofoil was clearly the way forward and the best way to maintain grip in a Formula One car.

Since the late 1960s, aerodynamic wings have been an omnipresent sight on Formula One cars, and have evolved from simple aerofoils to sophisticated items designed to channel the air as precisely as possible to the most efficient places to create downforce with a minimum of drag. The wings have changed shape considerably through the years, with the development of the Gurney flap, among other things. During the 1970s, large table-shaped rear wings were the norm, with some peculiar front wing designs throughout the years, while some of the cars in the early 1980s shed their front wings in the era of ground effect.

The cars of the early 1990s had noses mounted close to the ground, but by the middle of the decade, most of the front-runners had changed to a more highly-placed nose more reminiscent of today’s cars. Sculpted front wings, designed to push the air towards various critical places on the chassis, have been a notable part of recent Formula One cars. Whatever their configuration, though, the aerodynamic effects of the wings have been critical for success in Formula One almost since their first development, and they not only changed the dynamics of Formula One cars permanently, but also the appearance, as the large wings of today’s Formula One cars are their most obvious element, even to an unfamiliar spectator.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: